Integrated Precision Harvesting System: A Promising Technology to Improve Berry Yield and Quality

Precision Agriculture Research Team

Objectives

Develop improved integrated harvesting management systems = coupling of mechanical, biological and environmental processes

Increase the berry picking efficiency of blueberry harvester = LOWER cost of production

Improved Integrated Harvesting System

Sensor Fusion System to Identify Sources of Error
>Quantification of Multiple Fruit Losses During Harvesting
>Effect of Crop Characteristics and Machine Parameters on Berry Losses
>Effect of Harvest Timings and Climatic Condition on Fruit Losses Design
Analysis and Comparison of Different Harvester Heads
>Impact of Relative Velocity and Different Header Forces on Fruit Picking Efficiency
>Development of Bio-System Modeling for Coupling of Biological, Environmental and Mechanical Processes
>On-Line Computer Program for Precise Berry Harvesting Recommendations

Precision Agriculture Research Team

Quantification of Losses

0.91 m

Parameters

Pre-Harvest Loss
Fruit Yield
Fruit on the Ground
Fruit on the shoot
Fruit in Debris from blower
3 m Fruit on Pan (Back side of head)
Plant Height
Fruit Zone
Plant Density
Stem Diameter
Berry Sizes
Leaf wetness
Soil moisture
Plant pull
Slope
GPS Location

DALHOUSIE

Quantification of Losses

Experiment Design Parameters

$\begin{gathered} \text { Speed } \\ \text { (mile/hr) } \end{gathered}$	Revolutions (rpm)	Sample Collection		
$\begin{aligned} & 0.75,1.0 \\ & 1.25 \end{aligned}$	26	\square	\square	\square
	26	\square	\square	\square
	26	\square	\square	\square
$\begin{aligned} & 0.75,1.0, \\ & 1.25 \end{aligned}$	28	\square	\square	\square
	28	\square	\square	\square
	28	\square	\square	\square
$\begin{aligned} & 0.75,1.0, \\ & 1.25 \end{aligned}$	30	\square	\square	\square
	30	\square	\square	\square
	30	\square	\square	\square

Variables/Treatments:
Ground Speed: 0.75, 1.0 and 1.25 mph
Header Rotations: 26, 28 and 30 rpm

Quantification of Losses - Small Scott

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and 28 rpm Trt. 9: 1.25 mph and 30 rpm

Area $=4.6$ acres
Fruit Yield $=2600$ lb acre ${ }^{-1}$

Quantification of Losses - Cooper Site

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and 28 rpm Trt. 9: 1.25 mph and 30 rpm

Avg. Plant Height $=24 \mathrm{~cm}$
Avg. Density $=560$ plants \mathbf{m}^{-2}
\longrightarrow

Quantification of Losses - Tracdie site

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and $26 \mathbf{r p m}$ Trt. 8: 1.25 mph and 28 rpm Trt. 9: 1.25 mph and 30 rpm Trt. 10: 0.6 mph and 18 rpm Trt. 11: 0.6 mph and 20 rpm Trt. 12: 0.6 mph and 22 rpm

Avg. Plant Height $=27 \mathrm{~cm}$
Avg. Density $=474$ plants $\mathbf{~ m}^{-2}$

Area $=4.0$ acres Fruit Yield $=5500$ lb acre ${ }^{-1}$

Quantification of Losses - Frankweb site

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and $28 \mathbf{~ r p m}$ Trt. 9: 1.25 mph and 30 rpm

Quantification of Losses - Joe Slack's Site

Trt. $1 \quad 0.75 \mathrm{mph}$ and 24 rpm Trt. 20.75 mph and 26 rpm Trt. $30.75 \mathbf{~ m p h}$ and $28 \mathbf{r p m}$ Trt. $4 \quad 0.75 \mathrm{mph}$ and 30 rpm Trt. $5 \quad 1.0 \mathrm{mph}$ and 24 rpm Trt. 61.0 mph and 26 rpm Trt. $7 \quad 1.0 \mathrm{mph}$ and 28 rpm Trt. $8 \quad 1.0 \mathrm{mph}$ and 30 rpm Trt. $9 \quad 1.25 \mathrm{mph}$ and 24 rpm Trt. 101.25 mph and 26 rpm Trt. 111.25 mph and 28 rpm Trt. 121.25 mph and 30 rpm

Fruit yield increased $=474 \mathrm{lb}$ acre $^{-1}$

Avg. Plant Height $=20 \mathrm{~cm}$
Avg. Density $=\mathbf{6 0 3}$ plants \mathbf{m}^{-2}

Area $=9.6$ acres
Fruit Yield $=7900$ lb acre ${ }^{-1}$

UNIVERSITY Faculty of
Inspiring Minds Agriculture

16 Bar Head VS. 12 Bar Head

Site Selection

| Area $=8.0$ acres |
| :--- | :--- |
| Bare spots $=0.5$ acres |
| Average yield $=3385 \mathrm{lb}$ acre $^{-1}$ |

16 Bars vs. 12 Bars - Total Losses

Hardwood Hill Site

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and 28 rpm Trt. 9: 1.25 mph and 30 rpm

Avg. Plant Height $=19$ cm
Avg. Density $=646$ plants \mathbf{m}^{-2}

$$
\text { Area = } 5.1 \text { acres }
$$

Fruit Yield = 6973 lb acre ${ }^{-1}$

16 Bars vs. 12 Bars - Shoot Loss

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and 28 rpm Trt. 9: 1.25 mph and 30 rpm

16 Bars vs. 12 Bars - Ground Loss

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and 28 rpm Trt. 9: 1.25 mph and 30 rpm

16 Bars vs. 12 Bars - Blower Loss

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and 28 rpm Trt. 9: 1.25 mph and 30 rpm

16 Bars vs. 12 Bars - Total Losses

Trt. 1: 0.75 mph and 26 rpm Trt. 2: 0.75 mph and 28 rpm Trt. 3: 0.75 mph and 30 rpm Trt. 4: 1.0 mph and 26 rpm Trt. 5: 1.0 mph and 28 rpm Trt. 6: 1.0 mph and 30 rpm Trt. 7: 1.25 mph and 26 rpm Trt. 8: 1.25 mph and $28 \mathbf{~ r p m}$ Trt. 9: 1.25 mph and 30 rpm

Robic Glenn Site

Avg. Plant Height $=23 \mathrm{~cm}$
Avg. Density $=560$ plants \mathbf{m}^{-2}

$$
\text { Area }=8.0 \text { acres }
$$

Fruit Yield = 3385 lb acre ${ }^{-1}$

Teeth Bar Spacing

16 Bar Head

12 Bar Head

Spacing between the bars $=1.37$ inches
Spacing between the bars $=\mathbf{1 . 8 3}$ inches

12 bar head combed 6 times through each plant

Head Capacity Comparison

| 16 Bar Head | | 12 Bar Head | |
| :---: | :---: | :---: | :---: | :---: |
| Max Yield Harvestable
 (Kg /Ha) | 25568 | Max Yield Harvestable
 (Kg /Ha) | 19176 |
| 5\% Leaves
 by Volume | 24290 | 5% Leaves
 by Volume | 18217 |
| 10\% Leaves
 by Volume | 23011 | 10% Leaves
 by Volume | 17259 |
| 15\% Leaves
 by Volume | 21733 | 15\% Leaves
 by Volume | 16300 |

The capacity for the $\mathbf{1 2}$ bars head is $\mathbf{2 5 \%}$ lower than 16 bars head

Slow video of 16 Bars and 12 Bars (Back view)

16 bars vs. 12 bars

Aug. 21 (1 mph/28 rpm)

Slow video of 16 Bars and 12 Bars (Front view)

Slow video of 16 Bars and 12 Bars (Side view)

16 bars vs. 12 bars

需
 Aug. 21 ($1 \mathrm{mph} / 28 \mathrm{rpm}$)

16 Bars vs. 12 Bars - Plants Pulled (Before Rain)

16 Bars and 12 Bars - Plants Pulled (After Rain)

Slow video of 16 Bars and 12 Bars (Before rain)

16 bars vs. 12 bars

Slow video of 16 Bars and 12 Bars (After rain)

Economic Impact

Additional Revenues		Additional Expenses	
Avg. yield per ha $=3360 \mathrm{~kg}$	\$	No additional expenses will be required	\$
Avg. revenue per ha $=\$ 2.1 / \mathrm{kg} * 3360 \mathrm{~kg}$	\$ 7056		\$
improved yield/ha (say min. increase $5 \%)=168 \mathrm{~kg}$	\$		\$
Increase in revenue/ha with improved systems	\$ 353		\$
Increase in NS revenue $=\mathbf{1 6 , 0 0 0}$ ha* * \$353	\$ \$5.5 mill		\$
Total A:	\$ 5.5 mill	Total D:	\$
Reduced Expenses		Reduced Revenues	
Labor expenses might be reduced with automation	\$	No reduction in revenue	\$
	\$		\$
	\$		\$
	\$		\$
	\$		\$
Total B:	\$	Total E:	\$
C: (Total A + Total B)	\$ 5.5 mill	F: (Total D + Total E)	\$
Net Gain: C: \$ 5.5 mill - F: \$	$=$ =	. 5 million	

Conclusions

\checkmark The 12 bar head provides more space for plants which causes the head to take bigger bites
\checkmark The 12 bar head combed through each plant 6 times, while the 16 bar head combed through each plant 9 times
\checkmark The capacity of the 12 bar head is 25% lower than 16 bar head
\checkmark The 16 bar head keep the berries more securely inside the header
\checkmark The 12 bar head pulled 12% and 39% more plants when compared with 16 bar head during dry and wet conditions, respectively
\checkmark Field experimentation, visual observations and video clips proved that there were significantly higher losses with 12 bar head

We propose harvester should be operated at a combination of 0.75 mph and 26 rpm in wild blueberry fields with yield over $3000 \mathrm{~kg} \mathrm{ha}^{-1}$ to reduce berry losses

ACKNOWLEDGEMENTS

NSERE

